Tropospheric Ozone and Human Health

Michelle L. Bell

Yale School of Forestry and Environmental Studies

Connecticut Department of Environmental Protection June 9, 2005

Outline

- Brief history of air pollution and human health research
- Tropospheric ozone
- The relationship between ozone and mortality
 - Recent studies
 - Future research directions

Early Air Pollution and Human Health Research

Photos: DL Davis, 2002

Designer Smog Masks (London 1950's)

Source: DL Davis. When Smoke Ran Like Water (2002)

London 1952 10:30am

Source: National Archives

Cardiac Emergency Bed Service Applications for Greater London 1952

Source: Bell & Davis, EHP 2001

Modern Data: Philadelphia (1987-1994)

Source: NMMAPS, Johns Hopkins Bloomberg School of Public Health

Also in 1952: Discovery of Photochemical Smog

- Arie Haagen-Smit (1900 1977)
 - Began with study of vegetation damaged by air pollution
 - Discovered that tropospheric O₃ was
 - Not mainly from stratospheric intrusion
 - Not directly emitted but was formed through the chemical conversion of precursors
 - Suggested that O₃ and its precursors
 were the main constituents of LA smog

Tropospheric O₃ Chemistry (very simplified)

VOCs + NO
$$_x$$
 + heat / sunlight \rightarrow O $_3$

Secondary

Precursors to ozone

pollutant

Anthropogenic Ozone Precursors

VOC Sources

NO_x Sources

Source: EPA 2003

NO₂ and Health

- Health effects: irritation to throat and lungs, respiratory tract infection, exacerbation of asthma, lung function, possible increased susceptibility to allergens
- Children and asthmatics more susceptible
- Also a Criteria Pollutant

Volatile Organic Compounds (VOCS)

- Category of pollutants
- Gas
- Primary, secondary
- Sources: Biomass and fossil fuel combustion, construction materials, household chemicals (solvents), industry, biogenic sources
- Health effects: headache, dizziness, upper respiratory tract irritation, nausea, cancer

O₃ Isopleth Plot

Source: EPA Greenbook

Health Impacts of Ozone

- Effects on lung function
- Respiratory symptoms
- Exacerbation of asthma
- Hospital admissions
- Emergency room visits
- Mortality?

Source: EPA. Air Quality Criteria for Ozone and Related Photochemical Oxidants. 1996

Why divergent results for ozone and mortality?

- Potential reasons:
 - Differences in (and lack of) statistical power
 - Various statistical methods
 - Addressing of potential confounders
 - Underlying populations
 - Health care systems
 - Data quality
 - Others?

Why divergent results for ozone and mortality?

- Potential reasons:
 - Differences in (and lack of) statistical power
 - Various statistical methods
 - Addressing of potential confounders
 - Underlying populations
 - Health care systems
 - Data quality
 - -Others?

Confounders

- Potential confounder
 - Associated with the exposure of concern
 - Associated with the health endpoint
 - Not in the causal pathway
- Can create spurious associations or obscure real associations

Confounding Example

- What is associated with *both* the exposure and the health outcome?
 - Could potentially be a confounder

Potential Confounders for Ozone and Mortality

Approaches to Resolve Seemingly Conflicting Results

- 1) Meta-Analysis
 - Combine results of previous efforts
 - + Increased statistical power
 - + Can explore differences in model specification, location, etc.
 - Publication bias
- 2) Multi-City Study
 - Estimate the relationship in numerous locations
 - + The above advantages
 - + Lack of publication bias
 - Data intensive

1) Meta-Analysis Approach

- Systematically review the literature to find studies
- 144 effect estimates from 39 time-series studies
 - 38 in the U.S., 106 from outside the U.S.
- Combine the estimates using a Bayesian hierarchical model

$$\hat{\beta}^s \mid \beta^s, v^s \sim N(\beta^s, v^s), s = 1,..., S$$

$$\beta \mid \mu, \tau^2 \sim N(\mu, \tau^2)$$

Plus sensitivity analysis to model structure and distributions . . .

Source: Bell et al., Epidemiology 2005

Results by Cause

• Percent increase in daily total mortality for a 10 ppb increase in daily ozone (95% CI)

```
• Total: 0.87% (0.55, 1.18%)
```

- CVD: 1.11% (0.68, 1.53%)
- Respiratory: 0.47% (-0.51, 1.47%)

Comparison to Anderson et al. *WHO* Report (2004)

Other New Meta-Analyses

- Jonathan I. Levy, Susan M. Chemerynski, Jeremy A. Sarnat (2005). Ozone exposure and mortality risk: An empirical Bayes metaregression analysis. *Epidemiology* 16(4).
- **Kazuhiko Ito**, Samantha DeLeon, Morton Lippmann (2005). Associations between ozone and daily mortality: A review and additional analysis. *Epidemiology* 16(4).

Provided a single lag Provided multiple lags

Selected Meta-Analysis Results

- 144 effect estimates from 39 time-series studies
- Strong statistically significant association identified between ozone and mortality for total deaths and cardiovascular disease
- Implied relationship between ozone and respiratory disease mortality
- Large heterogeneity in individual study estimates
- Strong indications of publication bias

2) Multi-City Study

- Time-series study to investigate short-term exposure to ambient ozone (up to a week)
- 95 large urban U.S. communities (40% of the U.S. population)
- 14 years of daily data from 1987 to 2000
 - Some cities monitor O_3 for part of the year
- Uniform analysis framework for all cities
- Total and Cardiovascular/Respiratory mortality

Source: Bell et al., JAMA 2004

Hierarchical Approach

- Stage 1
 - Estimate the relationship between ozone and mortality within each city
- Stage 2
 - Combine the city-specific estimates to generate a national estimate, taking into account the uncertainty of each city's estimate

Stage 1: Community-Specific Model

Mortality for a given city on a given day

Ozone levels on that day and previous days

Day of the week

Time / longterm trends

$$\ln\left(E\left[\mu_{t}^{c}\right]\right) = \sum_{l=0}^{L} \beta_{l}^{c} x_{t-l}^{c} + \gamma^{c} DOW_{t}^{c} + S_{t}^{c} \left(time_{t}, df_{t}\right)$$

Temperature

Heat waves

$$+S_T^c(T_t^c, df_T) + S_{T_{1,3}}^c(T_{t-1,t-3}^c, df_{T_{1,3}})$$

Dew point on that day and recent days

$$+S_{D}^{c}(D_{t}^{c},df_{D})+S_{D_{1,3}}^{c}(D_{t-1,t-3}^{c},df_{D_{1,3}})$$

Community-Specific Bayesian Estimates

Exclude Days with High Temperatures

- •Results robust to exclusion of high temperature days
- •Effects range from: 0.50% (0.25, 0.75%) to 0.55% (0.30,0.80%)

Sensitivity to Adjustment by PM₁₀

Selected Multi-City Study Results

- 95 U.S. urban communities over 14 years
- Identified a strong statistically significant association between ozone and mortality
- Effects present for O_3 on the present day, previous day, and up to about a week
- Effects similar for all age groups considered
- Results robust to adjustment by PM₁₀, degrees of freedom for smooth functions of time, and temperature
- Association present even when considering only days below EPA's current standard

Compare Meta-Analysis and Multi-City Results

Air Quality Criteria for Ozone and Related Photochemical Oxidants (First External Review Draft)

Volume Lof III

Mortality now (tentatively) included as a health endpoint.

Source: EPA. Air Quality Criteria for Ozone and Related Photochemical Oxidants DRAFT. 2005

Future Research Directions

Ozone threshold studies

Future Research Directions

- Ozone threshold studies
- Climate change and ozone

Summer Ozone Levels (2050's vs. 1990's)

Future Research Directions

- Ozone threshold studies
- Climate change and ozone
- Particulate matter speciation
- Mortality and air pollution in Latin American urban centers

Summer Ozone Levels (2050's vs. 1990's)

Acknowledgements

Francesca Dominici, Scott L. Zeger,
Jonathan M. Samet, and Aidan McDermott
Johns Hopkins Bloomberg School of Public Health

Jonathan Patz
University of Wisconsin – Madison
Nelson Institute for Environmental Studies

Patrick L. Kinney
Columbia University, Mailman School of Public Health

Devra L. Davis

University of Pittsburg, Center for Environmental Oncology